Последние темы автора:
- [Юрий Курилов, Василина Баранова] Три кита успешных продаж. Кит 3. Сет иконок. Тариф Премиум (2025)
- [Александр Волоткевич] Биомеханика и неврология дыхания. Часть 3 (2025)
- [Вадим Закиров] Закрытый клуб нейро-фотостокеров (Июль 2025)
- [Лариса Чумак] [endo_doc_] Закрытый канал Биохимия мозга: ключ к себе. Июль (2025)
- [Продюсер нейродевочек] Телеграмный нейробурж (2025)
- #1
Голосов: 0
[Майкл Абель, Гвендолин Стриплинг] Машинное обучение с малым объемом кодирования: практическое введение в искусственный интеллект на основе проектов
В книге подробно представлены три проблемно-ориентированных вида машинного обучения (Machine learning, ML): автоматизированное обучение AutoML без кодирования, обучение BigQuery ML с малым объемом кодирования и обучение с применением пользовательского кода на основе библиотек scikit-learn и Keras. При этом от читателя не требуется глубоких предварительных знаний в ML или программировании, но базовые навыки в этих областях будут полезны. Специализированные библиотеки, фреймворки ML, репозиторий GitHub и другие инструменты описаны по мере их необходимости. В каждом конкретном случае ключевые концепции ML раскрыты с использованием реальных наборов данных для решения реальных задач. Рассмотрено применение AutoML для прогнозирования продаж, использование BigQuery ML для обучения линейных регрессионных моделей, обучение пользовательских ML-моделей на Python для прогнозирования оттока клиентов и ряд других популярных бизнес-кейсов.
Описание:
В книге подробно представлены три проблемно-ориентированных вида машинного обучения (Machine learning, ML): автоматизированное обучение AutoML без кодирования, обучение BigQuery ML с малым объемом кодирования и обучение с применением пользовательского кода на основе библиотек scikit-learn и Keras. При этом от читателя не требуется глубоких предварительных знаний в ML или программировании, но базовые навыки в этих областях будут полезны. Специализированные библиотеки, фреймворки ML, репозиторий GitHub и другие инструменты описаны по мере их необходимости. В каждом конкретном случае ключевые концепции ML раскрыты с использованием реальных наборов данных для решения реальных задач. Рассмотрено применение AutoML для прогнозирования продаж, использование BigQuery ML для обучения линейных регрессионных моделей, обучение пользовательских ML-моделей на Python для прогнозирования оттока клиентов и ряд других популярных бизнес-кейсов.
Вы узнаете:
- Как различать структурированные и неструктурированные данные и разбираться с проблемами, которые могут встретиться
- Как визуализировать и анализировать данные
- Как предварительно обрабатывать данные для ввода в модель машинного обучения
- Чем отличаются регрессионная и классификационная модели обучения с учителем
- Как сравнивать различные типы моделей ML и их архитектуры, начиная с моделей без кода и с малым объемом кода и заканчивая моделями пользовательского обучения
- Как проектировать, внедрять и настраивать модели ML
- Как экспортировать данные в репозиторий GitHub для хранения и управления ими
